Disruption of the AtREV3 Gene Causes Hypersensitivity to Ultraviolet B Light and -Rays in Arabidopsis: Implication of the Presence of a Translesion Synthesis Mechanism in Plants
نویسندگان
چکیده
To investigate UV light response mechanisms in higher plants, we isolated a UV light–sensitive mutant, rev3-1 , in Arabidopsis. The root growth of rev3-1 was inhibited after UV-B irradiation under both light and dark conditions. We found that chromosome 1 of rev3-1 was broken at a minimum of three points, causing chromosome inversion and translocation. A gene disrupted by this rearrangement encoded the catalytic subunit of DNA polymerase ( AtREV3 ), which is thought to be involved in translesion synthesis. The rev3-1 seedlings also were sensitive to -rays and mitomycin C, which are known to inhibit DNA replication. Incorporation of bromodeoxyuridine after UV-B irradiation was less in rev3-1 than in the wild type. These results indicate that UV light–damaged DNA interrupted DNA replication in the rev3-1 mutant, leading to the inhibition of cell division and root elongation.
منابع مشابه
Disruption of the AtREV3 gene causes hypersensitivity to ultraviolet B light and gamma-rays in Arabidopsis: implication of the presence of a translesion synthesis mechanism in plants.
To investigate UV light response mechanisms in higher plants, we isolated a UV light-sensitive mutant, rev3-1, in Arabidopsis. The root growth of rev3-1 was inhibited after UV-B irradiation under both light and dark conditions. We found that chromosome 1 of rev3-1 was broken at a minimum of three points, causing chromosome inversion and translocation. A gene disrupted by this rearrangement enco...
متن کاملRoles of Arabidopsis AtREV1 and AtREV7 in translesion synthesis.
Plants have mechanisms for repairing and tolerating detrimental effects by various DNA damaging agents. A tolerance pathway that has been predicted to be present in higher plants is translesion synthesis (TLS), which is catalyzed by polymerases. In Arabidopsis (Arabidopsis thaliana), however, the only gene known to be involved in TLS is the Arabidopsis homolog of REV3, AtREV3, which is a putati...
متن کاملRole of AtPolζ, AtRev1, and AtPolη in UV light-induced mutagenesis in Arabidopsis.
Translesion synthesis (TLS) is a DNA damage tolerance mechanism in which DNA lesions are bypassed by specific polymerases. To investigate the role of TLS activities in ultraviolet light-induced somatic mutations, we analyzed Arabidopsis (Arabidopsis thaliana) disruptants of AtREV3, AtREV1, and/or AtPOLH genes that encode TLS-type polymerases. The mutation frequency in rev3-1 or rev1-1 mutants d...
متن کاملRole of AtPolz, AtRev1, and AtPolh in UV Light-Induced Mutagenesis in Arabidopsis
Translesion synthesis (TLS) is a DNA damage tolerance mechanism in which DNA lesions are bypassed by specific polymerases. To investigate the role of TLS activities in ultraviolet light-induced somatic mutations, we analyzed Arabidopsis (Arabidopsis thaliana) disruptants of AtREV3, AtREV1, and/or AtPOLH genes that encode TLS-type polymerases. The mutation frequency in rev3-1 or rev1-1 mutants d...
متن کاملIdentification and Characterization of LHCB1 Co-Suppressed Line in Arabidopsis
To explore the function of light-harvesting complex protein (LHCP) in Arabidopsis growth and development, the Leclere and Bartel seed collection was screened. In this collection randomly cloned cDNAs are expressed under the CaMV35S promoter. A pale green line has been identified and characterized in more details. Analysis of the inserted cDNA in the pale green line showed it encodes LHCB1 prote...
متن کامل